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A Characterization Based on the Absolute Difference
of Two I.I.D. Random Variables
by
Prem S. Puri* and Herman Rubin¥*
Purdue University, Lafayette
i; INTRODUCTION. Let Xl anad X2 be two independent and identically distributed

(i.i.4.) random variables whose common distribution is same as that of a non-

negative random variable X. The problem considered here is to characterize all
possible distributions of X which satisfy the following property H:
(1) H: The distributions of lxl-XEI and X are identical,

For instance, it is easy to verify that the discrete distribution with
P(X =0) = P(X = a) = 4 for some positive constant a, and the exponential distri-
bution with probability density function {p.d.f.) f where f(x) =9 exp (-8x),
for x > 0, and f(x) = 0 elsewhere, with 8 > 0, both satisfy the property H. The
reader may find a different characterization based on lX1~X2| in Puri [2]. Let
¥ denote the distribution function (D.F.) of X. It can be easily shown that if
X satisfies H, the distribution of X can either he only discrete or absolutely
continuous or singular and no mixture is possible. Thus one needs to consider

these three possibilities separately. For the case when X is discrete let A
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denote the set of possible discrete nonnegative values that X takes. More speci-
fically, let

P, = P(X=y), yEA; with y;_",Apy = 1.
It is clear that if there exists a y > 0 with py > 0, then in particular A con-

tains zero with po > 0. Fuarthermore, from the property H, the following rela-

tions follow easily.

-
(2) Po = TP,
x20

(3) p.=2 TLpp._;¥>0.
y x>0 X xty

Similar relations are satisfied by the p.d.f. £ if X satisfying H is absolutely
continvous.

In section 2, we show that under H, X has a moment generating function
(m.g.f.) and hence ail its moments are finite. Also in theorem 1, we consider the
case where X is bounded. Section 3 deals with the discrete case, and theorem 2
characterizes lattice distributions satisfying K. In section 4, we coneider the
absolutely continuous case. Here we study @ more prieral question; namely if
Xl and Xé are two nonnegative independent but not necessarily identically dis-
tributed random variables (r.v.) and moreover if the distributions of Xl and
|xl-x2} are identical, then given the distribution of Xe, what can be said
about the distribution of Xl? The paper ends with a discussion in section 5,

where we have few words to say about the singular case.

2. PRELIMINARY RESULTS. In the following lemma it is shown that for an X satis-

~

fying H, its m.g.f. and hence all its moments exist.

Lemma 1. The m.g.f. of a nonnepative r.v. X satisfying H exists.

-ee—ta—"




Proof. If X satisfying H is degenerate, it is clear that P(X=0) = 1, and the
lemme holds trivially. Let X be nondegenerate. Then there is a number u > 0O

such that P(X < u) > 3. Using this and the property H, it follows that for every
(4) P(X > v) = P(lxl-x2| > v) > 2 P(X > uwv) P(X < u),

P(X > utv) < P(X>v) /2 P(X < u),

for all v > 0. A repeated appiication of this leads to

P(X > nu) iré}'pﬁ?—ﬁﬂmj; forn = 1,2,... .
From this one can easily show the existence of an o > 0 such that E(exp (X))
exists for all |T| < o,
The following theorem provides the answer to our problem when X is bounded.

Theorem 1. Let X be nonnegative and nondegenerate. Then the following three

statement. .re equivalent.

(i) X is bounded and satisfies H.

(ii) X satisfies H and P(X=0) = 3.

- 1

(iii) P(X=0) = P(X=a %, for some a > 0,

)
Proof. Clearly (iii) = (i) and (ii). All we need to prove is that (i) = (iii)

and (ii) = (iii). Let (i) hold. Since X is bounded and nondegenerate, there
exist a least upper bound B > 0, such that P(X > B) = 0 and for every 0 < ¢ < B,

P(X > B-¢)> 0. On the other hand since X satisfies H, we have for every such e
(5) 0 < P(X>B-c) = P(lxl-xai > B-¢) <2 P(X< ¢) P(X > B-g),
which implies that for every 0 < ¢ < B, P(X < ¢ > 1 and in particular letting

€ tend to uero we have P(X=0) > 4. This implies that X must be a discrete random
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variable (r.v). Using the notation introduced in section 1 for such a case, we

have

Y<py = P> < 1. This yields

x>0

Po(1-py) = :wpi s @ig PX> G>opx> = (;m;g p") (1-py),

so that Py < max P, Hence we have
T x0

e
t A

o

b

< < ]- <
po_r:ggcpx S l-py S

so that py = max p = 1 which implies that P(X=0) = P(X=B) = 4. This proves
x>0

that (i) = (iii) with B = a. Now let (ii) hold. Since Py L, X must be a dise
crete r.v if it has to satisfy H. For this we have already seen that po(l-po)

=L pi. This means that we have
x>0

2 1
= - = =,
Y ) ;- and € px g

x>0 x>0

But this holds if and only if p = L for some x = a > 0, so that (iii) holds.
Q.L.D.
Before closing this section we wish to remark that for the nondegenerate
discrete case, for X satisfying H we must have Q < P, < %. That P, > 0 follows

from (2) and the fact that % p, = 1. That p < 3 follews from the fact that
x>0

for ever > 0 with >0 > 2 under H.
yvy Py ’ Py 2 POPy

3. DISCRETE CASE. We now cvensider the case where X is discrete and satisfies

e d

the following additional condition C,

(6) C: Th.re exists an interval (6,,5.,) with 0 < 61 <t <=

1

such that P(6, < X < 8,) = C.
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Using the notation of section 1, we first prove three lemmas needed to prove
the main result of Theorem 2.

lemma 2. Let X be discrete, nondegenerate and satisfy H and tne condition C.

Then

(i) 7 = inf {x: x>0, px>0}>Oande>O,_§_rl<_i_

(ii) the set of possible values of X is given by kT; k = 0,1,2,...

Proof. (i) Since X is nondegenerate, it is clear that the set {x: x > 0, p, > 0}

is nonemty. Again if Py = 1) (i) and (ii) are satisfie? in view of Theorem 1,
50 that let 0 < po < %. By Theorem 1, this means that X is not bounded. Let S
be the set of possible values of X. In view of the property H, it is easy to
show that S forms a positive linear space in integers. By this we mean that if
x, ¢ S, 1 =1,2,... , then l; ny xi] ¢ S for all integer values (positive or
negative) of ni's. Now for ;n unbounded set with this property, it is not diffi-
cult to show that cither this set is dense everywhere cver [0,®) or is a lattice.
On the other hand in view of condition C, it cannct be dense everywiere. Hence
the lemma tfollows, Q.L.D.
In view of lemma 2, let p, denote the probability 2(X=kt), for k = 0,1,2,...

so that E‘pk = 1. The analogues cf (2) and (3) are given 'y

k=0 o
(9) Pq * \ZPL
1=0
(1) Py 2 1 SR K = 1,2,..
=0

We shall now restrict te the case with ¢ < Pp < 5. Thus the set of pessible

values of X, in view c! Thecrem i, must be infinitely denumerabdle. Furthermcre,

.

from {12) of the follewing lemmd it Tcliows that under sonditien C, p, > C, for




Lemma 3. Let H and C hold and also let 0 < Py < }. Then for k = 1,2

(11) Py 2<2 1 > " Prn
) 1-2 p
0]
and

2 -
2 p,(1-2p,)

P >
k+l - 2 2
- L
[(2-2p,)° + b p %

.pk

Proof. (11) follows easily from (10) by roticing that for k > 1,

3

o]
kel

(13) P(1-2p,) - 2pip = 2 i Pieg

e
[
ot

and that the right side oi (13) is nonnegative. To prove (12), we first notice

from (10) that for k > 1,

(o]
(14) P ey P, P
k+l Lo Ti Fi+k+l
1=0
or equivalently
[>+]
i=1

) ;; 2r {;
. M 1 P
(16) Py (1-2p,) > —=— VN p ¢ = (e )
k+l 0 l—&po L: i+l Tidk+]l l-:pc -éxpi Pk

Here at the end of {10) we have sgain used f10). Firally ¢

na

W ofrom {18) after & ijittle simpiitication,




For each sequence [pk} satisfying H (or equivalently (9) and (10)) and

wita 0 < p, < 1, define

A = sup {b: b > 0 satisfying B b P, forall k> 1}
and
y = sup {c: 0< ¢ <1, satisfying Py 2 ¢ P forallk > 1},
so :that
(17) R S k=1,2,...,
and
(18) pk+lz.ypk;k=l,2,... .

From lerma 3 it follows thal for every sequence [pk} satisfying H and with
0<p, < 1. there always existc positive 7 and y. Also by definition of 3, it
is clear that for every such sequence 0 < 8 < pl/pa. Here P, > 0; in fact because

of (12) P, > 0 for all k > 1. Also y has to be strictly betweeg 0 and 1. That

it cannot be equal %o one follows from (18) and the fact that Y p; converges.
i=0

The following lermma is the essential lead to the main theorem of this section.

Lezra 4. For everv seguence [pk} with 0 < p < 4 and satisfying H, 3 y = 1.
Proof. From (17) and (18) it is clear that 3 y < 1. It is sufficient then to

prove that 7 y > 1. From (14} we have for k > 2,

(19) p, (1-2p;) = 2 2 P; Py .
k=1

Using (18) on the right side of {(19) for cach p, we have

Pi+1Pi 4k Py Pkl

>~

' 2 2
- K ST e
(20) p (1 2po) < -

Ny
¥

[

e
gk

i=2

!
= ryy - 2pPyy - 29,1 &

s
.
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whick after simplificaticn, yields for k = 2,3,...

r <Py

> —

pk-l ol LY + l_2pO] pk ’
or equivalently for k = 1,2,... ,

( ePy 1

[o) > —

(21) P2 ly~ T-2p," Pt .

Comparing (17) and (21) and keeping the definitior of 3 in mind, we have

2pl

(22) (3 -v)2> T3,

Agein, using (17) on the right side of (19), we have for k > 2,

jas) [oe]

2p) 227 ) = 8(2
(23) P(12g) 220 ) 2y B TSR ) B By
121 i=2

= 1T - -
PIPyy T 2Py T PR
On simplification, (23) vields for k > 2,

3{1-2¢.)
r > 0 n
k ~ (1-2p0 + 2p13} Fg-1"

or equivalently for k > 1,

3(1-2p,)

(2k) Px+1 2~(1-2p0 +2p,8) Py -

Finally comparing (18) and (24) and using the definition of y, we obtain
3(1-2p,)
Y2 . z

or ater simplification
(25) (0-¥) < 75

Now it eusily follows from (22) and (25) that 3 y > 1. Q.E.D.




————

5:, ABSOLUTELY CONTINUOUS CASE.

We are now in a position to state and prove the main theorem of this section.

Theorem 2. Let X, and X2 ve twe irndependent copies of a nonnegative discrete
—————————v— ENh e

random variable X satisfying condition C. Ther X and the azbsolute difference

!xl-x2] have the same distributicn if and only if the disiribution of X is given

for some positive constant T, by

(25) [Br(x =0) = P,

>

b

3
/:;,

]

, k-l
kr) = 2py(1-p,) (1-2py)" 75 k = 1,2,...

-

where either P, = lorcc< Py <

Proof. The case with Py = 1 is that of a deg-nerate r.v. X.
————— 4

Also we have

argued before that for a nondegenerate X, we must have 0 < p. < 4. The case with

Py = é is covered in theorem 1. Let us assume then that C < Py <

o
.

from lerma

4 and equations (17) and (18) it fcllcws that

(27) Dpyy = YP 5 k=12,

or equivalently

(28) -y k=12,

Now it is easy to show using (9) and the fact that p, =1, that y = (l-2p0)

Rk

and P, = 2p0(l-po). Q.E.D.

Let f{x) denote the p.d.f of the nonnegative

r.v. X with the property H. The property H is then equivalent to f{x) satisfying

the relaions

(] o2
"

(29) } fx)dx =1 ; £(t) =2 X f(x+t) f£(x)dx ; for all t > 0.
0 0
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Furthermwore in view of theorem 1, X is unbounded. The following lemma gives
certain properties of an f satisfying (29), which we shall need later.

Lemma 5. Let the p.d.f f(x) of a nonnegative r.v X satisfy (29). Then it also

satisfies the following:

(1) £(x) is lower s=micontinuous for all x > 0.

(ii) £(x) > 0, for all x > O,
Procof. (i) From (29) for t = 0, we have
:32 o
(30) f(0) =2 I £ (xjdx f tx)dx = 1 ,
9
0 0
so that we must have £(0) > 0. On the other hand since

PT)

W(z) = | fly+) flylay 53 =< z2<o,
0

is the p.d.f of Xl—Xz, or equivalently the p.d.f. of the convolution of Xl and
X, ¥(z) is lower semicontinuous for all -» < z € », By virtue of (29) there-
fore, f(t) is lower semicontinucus for all t > O.

(ii) Assume that there exists an interval (a,b) with ¢ < a < b, such that

f(x) = 0 for all x ¢ (a,b). Since £(0) > 0 and 7(x) is lower semicontinuous at
zero, there is an ¢ > 0, with a < b - ¢/2, such that f(x) > 0, for all x € [0,¢].
Using this and (29), it is now easy to show that f(z) = 0, for all a < z < b +
¢/2, a.e.u. By an induction argument we then have f(z) = 0 for all a< z< b +
n ¢/2, a.e.u, for n = 1,2,... . Letting n~ =, we have f(z) = 0 for all a < z <
», a.e,p. But this implies that X is bounded, which is a contradiction. Thus
there exists no interval 1c[0,>) with pw(I) > O such that f(x) = 0 for all x ¢ I.

This implies that f(x, > O for all x > 0, a.e.un. Now let I(x

O) = 0 for some

> 0. en
XO 0. Then




ST eI T T

-

11

@ b

Y f(x+x0) flx)ix = ¢ = { f(x+x0) f(x)ix =0, for0<a<bp<w
0 ‘a

= f{x+x.) = 0, for all a < x < b with £(x) > 0, a.e.u.

0
But p {x: a<x<b, f{x) > ¢] = b-a, which also yields [x+x0 :a<x<b,
f(x) > 0] = b-a > 0. This contradicts the fact that f(x) > 0, for ali x > 0
a.e.p. Thus f(x) > 0, for ali x > 0. Q.E.D.

We shall now consider a more general problem. Let X and Y be two nonnega-
tive independently but not necessarily identically distributed random variables.
Let F and G dennte the D.F's of X and Y respectively. Given F and that the
distributions of Y and ]Y-X] are identical, what can we say about the distribu-
tion of Y, i.e. about G? The reader may find in Feller [1] a treatment of this
problem considered for a somewhat restricted case. That the distributions of ¥
and ]Y—XI are identical is equivalent to the relation
(31) G(t) = IA G{x+t) ar(x) + [- F(y+t) aG(y) ; for all t >0 .

0 0

The following theorem provides an answer to the question raised above,.

Theorem 3. Let X and Y be two nonnegative independent random variables with F

-—

and G as_their respective D.F.'s, Let E X< ® and F have an absolutely continu-

ous part, Then G satisfies (31) if and only if G is . :solutely continuous with

p.d.f. g where

(32) g(y) = [1-F(y)] / EX ; for all y > O.

22222- It is easy to verify that g(y) of (32) does satisfy (31). All we need

to show is that this is the unique g that satisfies (31). To this end, consider

a sequence of i.i.d. random variables Xl, X2, X3,..., with their common distri-

bution same as that of X. Define another sequence of random variables Zk recur-

sively by




WY

e g——CC—

Proof. Cleerly if f(x) satisfies (36), the distributions of X and |X

12

Z -X

n" n+ll

(33) 2y =X B =

Then clearly {zn} is a Markov chain (M.C) with state space [0,») and the tran-

sition D.F. H, given by

(34) aH(x]y) = dF(x-y) + aF(x+y) ,
so that if Gn is the D.F. of Zn’ it is easily observed that G1 = F and for

n=2,3,...,

o =
(35) 6, () = [ o o) ) + | FOew) ae_(x)

0 0
Letting n = <, we observe that any solution G of (31) is a stationary distribu-
tion of the M.C. [Zn]. We have already observed that g(y) given by (32) is such
as stationary distribution. That this is the unique stationary distribution and
hence the unique solution of (31) follows from the fact that the above M.C. de-
fined on [0,») is indecompesable, which is a simple consequence of the fact that
F has an absolutely continuous part. q.E.D,

In answer to our original question, we now have the following theorem.

Theorem 4, Let X, and X, be two independent copies of a nonnegative r.v. X

with p.d.f. f(x). Then X and ixl-xel have the same distribution, if and only if

for some 0 > 0,

Y

0 e“ex , for x 2 0

(36) f(x) =

( 0 elsevhere ,
e

l-Xef are
identical. Assuming now that the distributions of X and [Xl-le are the same,
it is easily seen that f(x) satisfies the conditions of theorem 3, in view of
lemmas 1 and 5. On the other hand comparing (29) and (31), we have under H,
g(y) = £(y), so that replacing g(y) with f(y) in (32), and solving the resulting

equation for f{y) = F'(y) we obtain (36) with 0 = EX. Q.1.D.
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5. ﬁ;EEELJEQQEEyDING REMARKS, The lines of proof adopted for theorem 3 and hence
of theorem Y4, in principle should also work fcr the discrete case of section 3.
Let X and Y be two appropriate nonnegative discrete r.v, both independently but
not necessarily identically distributed with {px} and {py} as the set of their
probabilities (as defined in section 1). Given that the distributions of Y and

iY-Xl are identical, the analogue of equation (29) is given by

PN

x>0

£

(37)

qy sz qx+y+ qu Px+y; for y > 0.
e 220

However, here essentially it is s matter of first guessing a general solution of
(37) for qy's satisfying ,quy = 1, in terms of px's, an analogue of (32). After
this, replacing qy‘s withDE;‘s in this solution, py's can be explicitly obtained
to yield the answer to our original problem,

Concerning the singular case of an X with property H, at present we can only
say in view of theorem 1, that X llas to be unbounded. On the other hand let us
consider again the approach adopted in section k. Let F(x) and G(y) respectively
be the continuous distribution functions of two nonnegative independent random
variables X and Y. This will cover both absolutely continuous and singular cases
of our problem. Introduce a M,C similar tc the one of section 4, defined on
[0,2), but with the assumption that X has ihe continuous D.F. F(x), so that (31)
and (35) are still satisfied. Any solution of (31) is a stationary D.F. G of our

M.C. [zn]. On the other hand, if EX< =, it is easily verifiable that

(38) aG(y)fdy = (1-F (x)] / EX ; , >0,

is a solution of (31) and hence a stationary D.F. of M.C. {in}. The only problem




1

here is to show that (38) is the unique solution of (31). For this we need to

show that the M.C. {zn} is indecomposable. Once this is established, (38) is

the unique solution of (31). The solution to our problem is then obtained by

replacing G with F in (38) and solving this for F. 'This turns out to be the same
as (36).

Thus, subject to the uniqueness of the solution of (31), t e solution

to our original problem would be (36) even when D.F. of X is given to be only

continuous. This would mean that there is no singular distribution with the

property H, Our conjecture is that this is in reality the case.
Finally, in section 3 for the discrete case the result of theorem 2 was
proved subject to the condition C. Our conjecture is that this result holds even

without this extra condition.
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